\qquad
Signature:
Student ID \#: \qquad Section \#: \qquad

- You are allowed a Ti-30x IIS Calculator and one 8.5×11 inch paper with handwritten notes on both sides. Other calculators, electronic devices (e.g. cell phones, laptops, etc.), notes, and books are not allowed.
- Some questions require you to explain answers: no explanation, no credit.
- Try to show your work on all questions: no work, no partial credit.
- You may use the back of the exam for scratch work: please submit any additional paper you use.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
T	$/ 50$

(1) A logistic curve is a curve in the (x, y)-plane defined by an equation of the form $y\left(1+a e^{-x}\right)=b$. (See coverpage for an illustration.)
(a) (4pts) Write a system of linear equations in a, b that can be used to fit a logistic curve to the following values of $(x, y):(0,1 / 3),(\ln 2,1 / 2)$.
(No need to simplify...yet.) $\left\{\begin{array}{c}e^{-0} / 3 a+1 / 3=b \\ e^{-\ln 2} / 2 a+1 / 2=b\end{array}\right.$, or in a standard, simplified
form, $\left\{\begin{array}{l}-a+3 b=1 \\ -a+4 b=2\end{array}\right.$
(b) (4pts) Solve this system (Hint: recall $e^{0}=1$, and $e^{-\ln x}=1 / x$.) From the RREF

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right)
$$

we see that there is a unique solution, $a=2$ and $b=1$.
(c) (2pts) How many equations can we add to this system without violating the existence of a solution? Explain. As many as we want. There are infinitely many different lines in the plane passing through the point $(2,1)$, and each one is defined by a linear equation different from the rest.
(2) (a) (7pts) Determine a 2×3 matrix $A=\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$ in reduced echelon form, such that z is a free variable and such that

$$
\mathbf{x}=\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)+s\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

is the general solution to the system

$$
\begin{aligned}
a x+b y+c z & =-1 \\
d x+e y+f z & =2 .
\end{aligned}
$$

The general form of the system and its solutions \mathbf{x} suggests that the third column of A should be free, and that the pivot variables x_{1}, x_{2} satisfy $x_{1}-x_{3}=$ -1 , and $x_{2}-x_{3}=2$. Thus, if we set

$$
A=\left(\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)
$$

we see that A is in RREF, and the inhomogeneous system in question has the desired form.
(b) (3pts) Consider the linear transformation associated to this matrix:

$$
T_{A}(x, y, z)=\binom{a x+b y+c z}{d x+e y+f z}
$$

Calculate $T_{A}(1,1,1) . A\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\binom{0}{0}$
(3) In each case below describe all values of t (when possible) for which the given vectors are linearly dependent. (2.5 pts each)
(a) $\binom{1}{2},\binom{\pi}{4},\binom{\sqrt{2}}{2024},\binom{t}{7}$ All t-more than n vectors in \mathbb{R}^{n} are always dependent.
(b) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}4 \\ t \\ 5\end{array}\right)$ No t-the first and second vector are never multiples.
(c) $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1+t\end{array}\right),\left(\begin{array}{c}1 \\ t^{2}-3 \\ \cos (t)\end{array}\right)$ Only $t=1$, in which case the first two vectors are multiples of each other.
(d) $\left(\begin{array}{l}0 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}t \\ t \\ 2 \\ 0\end{array}\right)$ Call the vectors v_{1}, v_{2}, v_{3}, and suppose we had a linear dependence $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$ specified by scalars $c_{1}, c_{2}, c_{3} \in \mathbb{R}$, not all zero. Considering the fourth coordinates of these vectors, we must then have $4 c_{1}+2 c_{2}-0$, or $c_{2}=-2 c_{1}$. Similarly, the first and second coordinates imply

$$
c_{3} t=-c_{2}=-2 c_{1},
$$

so we would need to have $c_{1}=c_{2}=0$. This would then force $c_{3} \neq 0$, and hence $t=0$-but even in this case, the third coordinate gives $2 c_{3}=0$, a contradiction. Thus, no such linear dependence can exist for any t.
(4) Three friends go to the space needle. In geocentric coordinates, Emmy and Johann stand at positions $\mathbf{x}_{1}=(2,0,0), \mathbf{x}_{2}=(1,1,0)$, respectively, and stare in the direction of vectors $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,1,2)$, respectively, towards Olga on the observation deck (see coverpage for an illustration.)
(a) (4pts) Model this problem with a system of 3 equations in 2 unknowns. We want to find two unknown scalars $c_{1}, c_{2} \in \mathbb{R}$ such that $\mathbf{x}_{1}+c_{1} \mathbf{v}_{1}=\mathbf{x}_{2}+c_{2} \mathbf{v}_{2}$. In standard form, this 3×2 linear system can be written as

$$
\left(\begin{array}{ll}
1 & -1 \\
2 & -1 \\
3 & -2
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

(b) (4pts) Calculate Olga's position vector \mathbf{x}_{3}. First, we solve the system by row-reducing the augmented matrix

$$
\left(\begin{array}{ccc}
1 & -1 & -1 \\
2 & -1 & 1 \\
3 & -2 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

hence $c_{1}=2$ and $c_{2}=3$. Olga's position equals

$$
\mathbf{x}_{3}=\mathbf{x}_{1}+c_{1} \mathbf{v}_{1}=\mathbf{x}_{2}+c_{2} \mathbf{v}_{2}=\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right)
$$

(c) (2 pts) Let A be the 3×2 coefficient matrix of the system from part a, and consider the associated linear transformation. Is T_{A} 1-1? Explain. Yes-from the RREF of A,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

we see that there every column of A is a pivot column, and hence by the "unifying theorem" T_{A} is 1-1.
(5) (a) (4pts) Write down the matrix representation of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that sends a point $(x, y) \in \mathbb{R}^{2}$ to the closest point on the x axis. The transformation in question is the projection onto the x-axis, whose matrix is $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
(b) (2pts) Is the linear transformation from 5a) onto? Explain. No-the codomain of T is all of \mathbb{R}^{2}, but the range of T just the x-axis.
(c) (4pts) Write down the matrix representation of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects a vector across the y-axis, then rotates it 270° counterclockwise around the origin. The reflection sends e_{1} to e_{1} and e_{2} to e_{2}, so its representing matrix is

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

The rotation sends e_{1} to $-e_{1}$ and e_{2} to e_{1}, so its representing matrix is

$$
B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Thus, for the composite transformation, we obtain

$$
B A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

This could also be computed without matrix multiplication, by thinking about where the composite transformation sends the standard basis. Note additionally that $A B \neq B A$.

